首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3525篇
  免费   657篇
  国内免费   542篇
化学   1855篇
晶体学   45篇
力学   307篇
综合类   49篇
数学   1014篇
物理学   1454篇
  2024年   5篇
  2023年   46篇
  2022年   98篇
  2021年   112篇
  2020年   173篇
  2019年   125篇
  2018年   137篇
  2017年   151篇
  2016年   173篇
  2015年   136篇
  2014年   170篇
  2013年   309篇
  2012年   232篇
  2011年   233篇
  2010年   197篇
  2009年   243篇
  2008年   218篇
  2007年   254篇
  2006年   216篇
  2005年   193篇
  2004年   177篇
  2003年   171篇
  2002年   169篇
  2001年   136篇
  2000年   97篇
  1999年   81篇
  1998年   93篇
  1997年   70篇
  1996年   59篇
  1995年   32篇
  1994年   40篇
  1993年   24篇
  1992年   27篇
  1991年   30篇
  1990年   10篇
  1989年   13篇
  1988年   9篇
  1987年   9篇
  1986年   6篇
  1985年   10篇
  1984年   10篇
  1982年   8篇
  1981年   1篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1977年   4篇
  1975年   1篇
  1973年   1篇
  1957年   1篇
排序方式: 共有4724条查询结果,搜索用时 171 毫秒
31.
A rapid route to 5,5‐ and 5,6‐ bicyclic systems is provided by an 1,3‐alkyl‐shift process mediated by a hypervalent iodine reagent on aromatics. The structures obtained contain several unsaturations with different behaviors and reactivities. Such diversity allows further elaborations for the rapid formation of compact systems present in a variety of natural products. The potential for further transformations has been demonstrated by performing a double Michael addition. This cyclization process is regio‐ and stereoselective due to the presence of a former benzylic substituent. Furthermore, an extension of this approach has been accomplished on indole derivatives.  相似文献   
32.
A homochiral helical three‐dimensional coordination polymer, poly[[(μ2‐acetato‐κ3O,O′:O)(hydroxido‐κO)(μ4‐5‐nicotinamido‐1H‐1,2,3,4‐tetrazol‐1‐ido‐κ5N1,O:N2:N4:N5)(μ3‐5‐nicotinamido‐1H‐1,2,3,4‐tetrazol‐1‐ido‐κ4N1,O:N2:N4:N5)dicadmium(II)] 0.75‐hydrate], {[Cd2(C7H5N6O)2(CH3COO)(OH)]·0.75H2O}n, was synthesized by the reaction of cadmium acetate, N‐(1H‐tetrazol‐5‐yl)isonicotinamide (H‐NTIA), ethanol and H2O under hydrothermal conditions. The asymmetric unit contains two crystallographically independent CdII cations, two deprotonated 5‐nicotinamido‐1H‐1,2,3,4‐tetrazol‐1‐ide (NTIA) ligands, one acetate anion, one hydroxide anion and three independent partially occupied water sites. The two CdII cations, with six‐coordinated octahedral and seven‐coordinated pentagonal bipyramidal geometries are located on general sites. The tetrazole group of one symmetry‐independent NTIA ligand links one of the independent CdII cations into 61 helical chains, while the other NTIA ligand links the other independent CdII cations into similar but unequal 61 helical chains. These chains, with a pitch of 24.937 (5) Å, intertwine into a double‐stranded helix. Each of the double‐stranded 61 helices is further connected to six adjacent helical chains through an acetate μ2‐O atom and the tetrazole group of the NTIA ligand into a three‐dimensional framework. The helical channel is occupied by the isonicotinamide groups of NTIA ligands and two helices are connected to each other through the pyridine N and carbonyl O atoms of isonicotinamide groups. In addition, N—H...O and O—H...N hydrogen bonds exist in the complex.  相似文献   
33.
The effectiveness of Congo red (CR) adsorption from aqueous solutions onto MgAl-layered double hydroxide (MgAl-LDH) nanosorbents was examined in this study. MgAl-LDH was synthesized using the hydrothermal method, and physicochemical characterization was performed via powdered X-ray diffraction, high-resolution transmission electron microscopy, Fourier transform infrared analysis, and zeta potential measurements. For optimum adsorption of CR onto the synthesized MgAl-LDH nanosorbent, the adsorption process was employed in batch experiments. Adsorption parameters, such as the adsorbent dosage, solution pH, contact time, and initial adsorbate concentration, vary with the adsorption kinetics and isotherm mechanism. The results of the batch experiments indicated rapid adsorption of CR dye from aqueous solutions onto MgAl-LDH during the first 30 min until equilibrium was achieved at 180 min with a dye concentration of 50 mg/100 mL and MgAl-LDH adsorbent dosage of 0.05 g. The experimental adsorption data fit adequately with the monolayer coverage under the Langmuir isotherm model (R2 = 0.9792), and showed the best fit with the pseudo-second-order kinetic model (R2 = 0.996). The change in zeta potential confirmed the effective adsorption interaction between the positively charged MgAl-LDH and the negatively charged CR molecules with electrostatic interactions. This work is distinguished by the successful hydrothermal preparation of MgAl-LDH in the form of homogenous nanoscale particles (~100 nm). The prepared MgAl-LDH showed a high adsorption capacity toward anionic CR dye with a maximum adsorption capacity of 769.23 mg/g. This capacity is higher than those reported for other adsorbents in previous research.  相似文献   
34.
Herein, we report a facile method for synthesizing MoCo-layered double hydroxide (LDH) nanosheets employing Prussian blue analog (PBA) as the precursor. The introduction of Mo in Co-LDH modulates the electronic structure, increases the number of active sites and electrochemical surface area to improve the hydrogen evolution, oxygen evolution, and overall water splitting activity. As a result, PBA-derived Mo0.25Co0.75-LDH nanosheets demonstrated 10 mA cm?2 current density at only 220 mV and 115 mV overpotentials for OER and HER, respectively. The overall water splitting was attained at 1.52 V cell voltage for 10 mA cm?2 current density.  相似文献   
35.
Developing oxygen evolution reaction (OER) electrocatalyst based on earth-abundant materials holds great promise for ascertaining water-splitting to surmount its deprived kinetics. In this regard, NiFe-LDH (layered double hydroxide) receives considerable attention owing to their layered structure. However, they still suffer from poor electronic conductivity and structural stability. We combined NiFe-LDH nanosheets with Magnéli phase Ti4O7 into a heterostructured composite. A series of analyses reveal that decorating Ti4O7 facilitates charge transfer to enhance the conductivity of NiFe-LDH-Ti4O7. During electrochemical measurement, Ni2+ is transformed to metastable Ni3+ (Ni (OH)→ NiOOH) before the OER onset potential. Thus, the presence of Ni3+ as the main active sites could improve the chemisorption of OH? to facilitate OER. As a result, the NiFe-LDH-Ti4O7 catalyst delivers as low as onset potential (1.43 V). Combining the holey structure (NiFe-LDH and Ti4O7) and the defect engineering generated on NiFe-LDH-Ti4O7 as a synergistic effect improves the OER performance. The inclusion of Ti4O7 in the composite leads to more vacancy sites, as evidenced by the extended X-ray absorption fine structure (EXAFS) analysis. The obtained defective structure with a low coordination environment would improve the electronic conductivity and facilitate the adsorption process of H2O onto metal cations, thereby increasing the intrinsic catalytic activity of NiOOH. The strong coupling of NiFe-LDH and Ti4O7 also increases the stability, and the heterostructured composite helps maintain the structural robustness of the LDH.  相似文献   
36.
Tuning the interior chemical composition of layered double hydroxides (LDHs) via lattice engineering route is a unique approach to enable multifunctional applications of LDHs. In this regard, the exfoliated 2D LDH nanosheets coupled with various guest species lead to the lattice-engineered LDH-based multifunctional self-assembly with precisely tuned chemical composition. This article reports the synthesis and characterization of mesoporous zinc–chromium-LDH (ZC-LDH) hybridized with isopolyoxovanadate nanohybrids (ZCiV) via lattice-engineered self-assembly between delaminated ZC-LDH nanosheets and isopolyoxovanadate (iPOV) anions. Electrostatic self-assembly between 2D ZC-LDH monolayers and 0D iPOV significantly altered structural, morphological, and surface properties of ZC-LDH. The structural and morphological study demonstrated the formation of mesoporous interconnected sheet-like architectures composed of restacked ZCiV nanosheets with expanded surface area and interlayer spacing. In addition, the ZCiV nanohybrid resistive elements were used as a room-temperature gas sensor. The selectivity of ZCiV nanohybrid was tested for various oxidizing (SO2, Cl2, and NO2) gases and reducing (LPG, CO, H2, H2S, and NH3) gases. The optimized ZCiV nanohybrid demonstrated highly selective SO2 detection with the maximum SO2 response (72%), the fast response time (20 s), low detection limit (0.1 ppm), and long-term stability at room temperature (27 ± 2 °C). Of prime importance, ZCiV nanohybrids exhibited moderately affected SO2 sensing responses with high relative humidity conditions (80%–95%). The outstanding SO2 sensing performance of ZCiV is attributed to the active surface gas adsorptive sites via plenty of mesopores induced by a unique lattice-engineered interconnected sheet-like microstructure and expanded interlayer spacing.  相似文献   
37.
A sensitive, low-cost, and simple electrochemical sensor based on Zn−Al layered double hydroxide (Zn−Al LDH) combined with a polymer film of methyl red (PMR) to modify a GCE has been created for the first time. Using cyclic voltammetry (CV), the electrochemical characteristics of the newly fabricated sensor were investigated. The characterised PMR/Zn−Al LDH/GCE shows high electro-catalytic activity towards the vitamin C (AA) and aspirin (ASA) oxidation. Schematic fabrication of PMR/Zn−Al LDH/GCE for the determination of AA or ASA was presented. The new sensor demonstrated superior analytical efficiency for the simultaneous identification of AA and ASA traces in well-spaced anodic peaks, even in the presence of certain intervening species. According to experimental results, the fabricated sensor represented two well-separated oxidation peaks for AA and ASA oxidation with potential difference of 799 mV (vs. Ag/AgCl). The linear dependences of the anodic peak currents of AA and ASA on their concentrations in the ranges of 0.10–53.17 μM are good. The detection limits of AA and ASA at the PMR/Zn−Al LDH/GCE were found to be 1.26 and 1.27 μM, respectively. Meanwhile, the quantification limits of AA and ASA were calculated as 4.21 and 4.25 μM, respectively. On other hand, the limit of detection (LODs) of AA and ASA oxidation were determined to be 0.47 and 0.21 μM, respectively, according to DPV method. The effect of scan rate (100 to 800 mV/s) on the anodic peak currents of AA and ASA was examined. A sensing model mechanism has been suggested and discussed in detail. Finally, the proposed sensor displayed a good reproducibility, stability and selectivity. The developed sensor was eventually used to successfully detect AA and ASA in urine samples.  相似文献   
38.
以蔗渣木聚糖(BX)为主要原料、氨基三磺酸钠为酯化剂,在一步酯化合成磺酸基蔗渣木聚糖酯的基础上,利用磺酸基蔗渣木聚糖酯和对羟基苯甲酸进行二步酯化反应,合成了磺酸基蔗渣木聚糖对羟基苯甲酸酯,并考察了反应条件对酯化反应的影响,通过单因素实验确定了第二步酯化反应较佳的合成工艺条件.蔗渣木聚糖酯化改性前后的样品分别用FT-IR,DG-DTG和XRD进行了表征,并对该双酯化衍生物的分子进行了优化与活性模拟.结果表明:FT-IR证明双酯化产物含有磺酸基团和对羟基苯甲酸酯基团,TG-DTG分析表明该双酯化衍生物的热稳定性提高,XRD说明发生双酯化改性后分子排列的规整性提高,结晶度增加;活性模拟实现了磺酸基蔗渣木聚糖对羟基苯甲酸酯与艾滋病毒的对接.  相似文献   
39.
《中国化学》2017,35(11):1701-1705
The development of asphalt‐based UV blocking materials is important to extend the alphalt lifespan in road construction. In this work, we put forward that the fabrication of host‐guest system can be an effective way to obtain UV blocking materials. Firstly, a new anionic Schiff base, N ,N' ‐bis(salicylidine)‐4,4'‐diaminostilbene‐2,2'‐disulfonic acid (SDSD ), has been synthesized, which was intercalated into Zn‐Al‐LDH by anion‐exchange method. FT‐IR and XRD illustrate the layered organic–inorganic composite, Zn‐Al‐SDSD‐LDH , has been successfully synthesized with high crystallinity. Laser particle size analyzer, SEM and TEM show that particle size distributions of Zn‐Al‐SDSD‐LDH is in the range 100–500 nm. UV –vis absorption spectra show that Zn‐Al‐SDSD‐LDH has better UV absorption than the pristine Zn‐Al‐LDH and SDSD . Furthermore, the mixture of asphalt and 3 wt% Zn‐Al‐SDSD‐LDH presents enhanced UV blocking property relative to the pristine asphalt after irradiating by UV spray accelerated weathering test. Therefore, this work not only develops a new type of host‐guest Zn‐Al‐SDSD‐ LDH , but also confirms it can be an effective asphalt UV blocking material for practical application.  相似文献   
40.
Involving supramolecular chemistry in self‐assembling block copolymer systems enables design of complex macromolecular architectures that, in turn, could lead to complex phase behavior. It is an elegant route, as complicated and sensitive synthesis techniques can be avoided. Highly grafted double‐comb diblock copolymers based on symmetric double hydrogen bond accepting poly(4‐vinylpyridine)‐block‐poly(N‐acryloylpiperidine) diblock copolymers and donating 3‐nonadecylphenol amphiphiles are realized and studied systematically by changing the molecular weight of the copolymer. Double perpendicular lamellae‐in‐lamellae are formed in all complexes, independent of the copolymer molecular weight. Temperature‐resolved measurements demonstrate that the supramolecular nature and ability to crystallize are responsible for the formation of such multiblock‐like structures. Because of these driving forces and severe plasticization of the complexes in the liquid crystalline state, this supramolecular approach can be useful for steering self‐assembly of both low‐ and high‐molecular‐weight block copolymer systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号